Spotted fever group Rickettsia spp. in questing Ixodes ricinus ticks in north-eastern Poland

Katarzyna Kubiak¹* Hanna Szymańska¹ Małgorzata Dmitryjuk² Ewa Dzika¹

¹Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland ²Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland *e-mail: katarzyna.kubiak@uwm.edu.pl

Introduction & aim of the study

The genus Rickettsia (Rickettsiales; Rickettsiaceae) includes Gram-negative, obligate, intracellular bacteria that are transmitted by arthropod vectors (Fournier and Raoult, 2007). In Europe, one of the reservoirs and vectors of *Rickettsia* spp. pathogenic for humans, included in the spotted fever group (SFG), are *lxodes* ricinus ticks. In humans, the most common clinical symptoms of tick-borne rickettsiosis are fever. headache, myalgia, and rash (Azagi et al. 2020).

- Poland

CURRENT PARASITOLOGY

EMOPXIV 26-30.0 WROCŁAW

The aim of the study was: assessment the prevalence of Rickettsia spp. in questing *I. ricinius* ticks in north-eastern

determination of the diversity species of the Rickettsia genus in the study area

examining the impact of conditions related to the subregion, biotope and year of study on the frequency of *Rickettsia* spp.

Material & methods

Study area and ticks collection

Rickettsia spp. were detected in a total of 4090 I. ricinus ticks, including 381 females, 450 males and 3260 nymphs (652 pools of 5 specimens). The questing ticks were collected between April and June 2016-2017 in Warmia and Mazury region using the standard flagging method. The tick collection sites represented the western, central and eastern part of the region and two types of habitats: forest landscapes and ecotones (Fig. 1).

Molecular analysis

Total DNA was extracted using the ammonia method (Rijpkema et al., 1996). The presence of Rickettsia spp. in tick genomic DNA samples was confirmed by the PCR method using set of primers (CS409/Rp1258) (Roux et al. 1997) specific to the citrate synthase (gltA) gene. The Rickettsia species were identified by sequencing the PCR products (Macrogen Europe, Amsterdam, the Netherlands). The nucleotide sequences obtained were compared with the data registered in the GenBank database using the BLAST-NCBI.

Fig. 1. Tick collection sites located in western, central and eastern subregions of north-eastern Poland.

Statistical & phylogenetic analysis

A chi-square test and 95% confidence intervals (95% CI) were used to compare the infection rate between sex of ticks, regions, habitats and years of study. The analysis was conducted using the software package SPSS version 27.0 for Windows (SPSS Inc., Chicago, IL). In all analyses, p-values below 0.05 were considered statistically significant. The phylogram was constructed using the Maximum Likelihood method based on the Kimura 2-parameter model. The topology of the phylogenetic tree was evaluated using the bootstrap method with 1,000 replicates. Phylogenetic analysis was conducted using MEGA X software (https://www.megasoftware.net).

Results

	Table 1. Prevalence of <i>Rickettsia</i> spp. in <i>I. ricinus</i> ticks by develope stage, year, subregion and habitat, north-eastern Poland				
in 44 70/			No. of tested ticks	<i>Rickettsia</i> -positive n/% * (95% Cl)	p-value**
in 11.3% in at	Stage	Nymphs	3259	212/6.5ª (5.68-7.41)	<0.001
ection ab. 1).		Females	381	43/11.3 ^b (8.29-14.90)	
		Males	450	53/11.8 ^b (8.95-15.12)	
ositive in 2016		2016	2188	183/8.4ª(7.24-9.60)	0.030
	Year	2017	1902	125/6.6 ^b (5.50-7.78)	
ion of	Subregion	West	1563	104/6.7ª (5.47-8.00)	0.003
		Central	1351	129/9.5 ^b (8.03-11.24)	
		East	1173	75/6.4ª (5.05-7.93)	
ect the nich was n	Habitat	Forest	1750	127/7.3ª(6.09-8.57)	0.567
		Ecotone	2340	181/7.7ª (6.68-8.89)	0.567
	Total		4090	308/7.5 (6.74-8.38)	
	* - for nymphs Minimum Infection Rate (MIR) is given (5 nymphs per isolate): ** - chi2 test				

* - for nymphs Minimum Infection Rate (MIR) is given (5 nymphs per isolate); ** - chi2 test, p<0.05; a, b – different letters mean significant differences (post -hoc Bonferroni test)

- **Rickettsial DNA was detected i** of females, 11.8% of males and i least 6.5% (MIR, minimum infe rate) of nymphs of I. ricinus (Ta
- The proportion of *Rickettsia*-po ticks was significantly higher in (8.4%) than in 2017 (6.6%).
- The highest infection rate (9.59) recorded in the central subregi Warmia and Mazury.
- The type of habitat did not affe Rickettsia spp. prevalence, whi 7.3% in forest areas and 7.7% in ecotones.

Results

Sequence analysis of the fragment of gltA gene (~730 bp) showed the presence of R. helvetica and R. monacensis. Both Rickettsia species are known as human pathogens. All obtained nucleotide sequences of R. helvetica (n=45) were similar and showed 100% identity to isolate C9P9 of R. helvetica (GenBank: U59723). The same nucleotide sequence was also detected from *I. ricinus* in north-eastern (GenBank: OM927745) and central (GenBank: MH018978) Poland as well as from Serbia (GenBank: MH618386) and Italy (GenBank: MN226407) (Fig.2). One obtained sequence identified as R. monacensis showed 100% identity with gltA sequences of the *R. monacensis* strain IrR/Munich from Germany (GenBank: LN794217) and from questing I. ricinus ticks from north-eastern (GenBank: MW595238) and central Poland (GenBank: MH018982) (Fig.2).

Conclusion

The current study has confirmed the presence of *Rickettsia* species included in the spotted fever group (SFG) in the population of *I. ricinus* ticks in north-eastern Poland. The prevalence of *R. helvetica* and *R. monacensis* is relatively low, however indicates that spotted fever rickettsioses should not be excluded in the diagnosis of tick-borne diseases in people bitten by ticks in this area. The risk of infection with these pathogens, determined based on infected ticks, varied significantly depending on the year of study and the subregion of north-eastern Poland.

/	R. helvetica I. ricinus isolate R.hV1WM16/17 north-eastern Poland				
	MW595233 <i>R. helvetica D. reticulatus</i> wild boar skin north-eastern Poland				
	U59723 <i>R. helvetica</i> strain C9P9				
	OM927745 R. helvetica I. ricinus north-eastern Poland				
	MH018978 R. helvetica I.ricinus central Poland				
62	MN226407 R. helvetica I. ricinus Italy				
MW595232 R. helvetica D. reticulatus deer skin north-eastern Polan					
	OQ689707 R. helvetica D. reticulatus human skin Poland				
	KY488349 R. helvetica Apodemus agrarius blood Poland				
89	MH018974 R. helvetica I. ricinus central Poland				
	MH618386 <i>R. helvetica I. ricinus</i> Serbia				
	KM288468 R. helvetica I. persulcatus Russia: Novosibirsk region				
	DQ131912 R. helvetica I. persulcatus Russia: southern Ural				
	OR496611 R. helvetica I. ricinus Russia: Kaliningrad region				
Y	KP866150 R. helvetica I. persulcatus Russia: north-western Ural				
4	<i>R. monacensis I. ricinus</i> isolate R.mV1WM16/17 north-eastern Poland				
	LN794217 R. monacensis strain IrR/Munich				
e	MH018979 R. monacensis I. ricinus cental Poland				
	MH018982 R. monacensis I. ricinus central Poland				
	MW595238 R. monacensis I. ricinus deer skin north-eastern Poland				
l	MH618388 <i>R. monacensis I. ricinus</i> Serbia				
9	5 OR399958 <i>R. monacensis I. ricinus</i> Portugal				
	OM128117 R. monacensis I. ricinus Turkey				
	KC993860 <i>R. monacensis</i> human blood South Korea				
	— AE017197 <i>R. typhi</i> strain Wilmington				

Fig. 2. Molecular relationships between *Rickettsia* spp. identified in the study and accessions from GenBank, based on the sequences of the gltA gene. The sequences obtained in this study are labelled with symbols.

0.1